Leading superconducting instabilities in three-dimensional models for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>RuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>
نویسندگان
چکیده
The unconventional superconductor ${\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}$ has been the subject of enormous interest over more than two decades, but until now form its order parameter not explicitly determined. Since groundbreaking NMR experiments revealed recently that pairs are dominant spin-singlet character, attention focused on time-reversal symmetry breaking linear combinations $s$-, $d$-, and $g$-wave one-dimensional (1D) irreducible representations. However, a state ${d}_{xz}+i{d}_{yz}$ corresponding to two-dimensional representation ${E}_{g}$ also proposed based some experiments. We present systematic study stability various superconducting candidate states, assuming pairing is driven by fluctuation exchange mechanism, including realistic three-dimensional Fermi surface, full treatment both local nonlocal spin-orbit couplings, wide range Hubbard-Kanamori interaction parameters $U,J,{U}^{\ensuremath{'}},{J}^{\ensuremath{'}}$. leading instabilities found exhibit nodal even-parity ${A}_{1g}({s}^{\ensuremath{'}})$ or ${B}_{1g}({d}_{{x}^{2}\ensuremath{-}{y}^{2}})$ symmetries, similar findings in models without longer-range Coulomb which tends favor ${d}_{xy}$ ${d}_{{x}^{2}\ensuremath{-}{y}^{2}}$. Within so-called Hund's coupling mean-field scenario, ${E}_{g}({d}_{xz}/{d}_{yz})$ solution can be stabilized for large $J$ specific forms coupling, all cases studied here eigenvalues other solutions significantly larger when vertex included kernel. Additionally, we compute spin susceptibility relevant phases compare recent neutron scattering nuclear magnetic resonance (NMR) Knight shift measurements. It supports phase, contrast experiment [K. Jenni et al., Phys. Rev. B 103, 104511 (2021)], whereas ${s}^{\ensuremath{'}}+i{d}_{{x}^{2}\ensuremath{-}{y}^{2}}$ does not. Furthermore, comparison reveals exhibits low-temperature ${d}_{xz}+i{d}_{yz}$.
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولNormal forms for three-dimensional parametric instabilities in ideal hydrodynamics
We derive and analyze several low dimensional Hamiltonian normal forms describing system symmetry breaking in ideal hydrodynamics. The equations depend on two parameters (e,2), where e is the strength of a system symmetry breaking perturbation and 2 is a detuning parameter. In many cases the resulting equations are completely integrable and have an interesting Hamiltonian structure. Our work is...
متن کاملMagnetic instabilities in superconducting composites
The stability of electric currents in multifilamentary superconducting composites against flux jumps is discussed in detail. The normal procedure for such a quantitative stability investigation is carried out. In some particular cases the stability criteria are found and analysed.
متن کاملLong-wavelength instabilities of three-dimensional patterns.
Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to three-dimensional patterns and are applied to two-species reaction-diffu...
متن کاملInstabilities of a three-dimensional localized spot.
We investigate the behavior of localized spots in three spatial dimensions in a model two-variable system describing the Belousov-Zhabotinsky reaction in water-in-oil microemulsion. We find three types of instabilities: splitting of a single spot (i) into two spots, (ii) into a torus, and (iii) into an unstable shell that splits almost immediately to six or eight new spots.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review research
سال: 2022
ISSN: ['2643-1564']
DOI: https://doi.org/10.1103/physrevresearch.4.033011